
01/08/2023

Rules As Code
Definition, delivery and testing (Version 1.0)

Gordon Guthrie
RESEARCH FELLOW AT SCOTTISH GOVERNMENT
BIUS WORKING PAPER NO 2
(THIS DOCUMENT DOES NOT REFLECT THE VIEWS OF SCOTTISH GOVERNMENT)

1

Contents

1 INTRODUCTION 2

1.1 WHAT IS RULES AS CODE? 2
1.2 WHO ARE YOU? 2
1.3 WHY SHOULD YOU READ THIS? 2

2 THE BIUS PROJECT 3

3 EXECUTIVE SUMMARY 4

4 CONTEXT 5

5 BACKGROUND 6

6 FUTURE STATE 10

6.1 TEST FIRST DEVELOPMENT 10
6.2 CONSUMPTION OF DATA SOURCES (AND COMMON NON-FUNCTIONAL SPECIFICATION) 11

7 BARRIERS TO UPTAKE 13

8 FURTHER WORK 14

9 TECHNICAL APPENDIX 1 – TEST FIRST DEVELOPMENT WORKED EXAMPLES 15

9.1 TEST CASE 1 – HYPERNUMBERS 15
9.2 TEST CASE 2 – BET365 15

10 TECHNICAL APPENDIX 2 – OUTSTANDING TECHNICAL ISSUES 17

10.1 ISSUE: GENERATING TESTS 17
10.2 ISSUE: FRAGILITY 19
10.3 ISSUE: DECOUPLING 21
10.4 IN SUMMARY 21

2

1 Introduction

1.1 What is Rules as code?

Rules as code is an emerging discipline that aims to bring computational discipline to rules-
making, particularly as to rules that are defined in legislation.

There are many variants and approaches in this emerging discipline, but this working paper is
looking in particular an approach whereby the legal text of a law is annotated in a machine
compilable way. The compilation process can be used to identify internal inconsistency in
different elements of the law. It can also turn the annotated text into a simple computer
system which can be used in a variety of ways.

1.2 Who are you?

You are a programme manager, software developers, tester, service designer or
parliamentary draftsman with an interest in the creation of digital systems that implemented
laws.

1.3 Why should you read this?

This report outlines a number of approaches that might help you:

• develop new legislative proposals

• model the impact of draft legislation before it is adopted

• generate components for use in live calculatory systems

• generate test suites for sytems implementing legislation

• remove barriers to entry into regulated sectors of the economy

3

2 The BIus Project

This is Working Paper No 3 of BIus - Basic Law-Making For Legislative Computer Systems
which is a research project looking systemically at how the state creates the digital systems
underpinning its services.

Working papers are being released gradually for comment:
Working Paper 0 – The locus of change (forthcoming)
Working Paper 1 – Data and the rule of law (published)
Working Paper 2 – Rules as code (this document)
Working Paper 3 – The Lego state (published)
Working Paper 4 – The remixable state (published)
Working Paper 5 – Law reform for data (forthcoming)
Working Paper 6 – A solera for data cleansing (forthcoming)
Working Paper 7 – Experimental digital legislative processes (forthcoming)

BIus working papers are designed to stimulate discussion about key elements of the
relationship of the state to digital systems and their delivery. Your feedback, input, and
particularly criticisms of this paper are most welcome. Feel free to distribute it however you
wish.

Working papers are published via the Digital Policy SubStack.

Author/contact: gordon.guthrie@gov.scot or subscribe to Digital Policy | Gordon Guthrie |
Substack1

The author is an independent Research Fellow at Scottish Government under the First
Minister’s Digital Fellowship programme. The views of this paper do not represent the views
of Scottish Government.

1 https://digitalpolicy.substack.com/

mailto:gordon.guthrie@gov.scot
https://digitalpolicy.substack.com/
https://digitalpolicy.substack.com/
https://digitalpolicy.substack.com/

4

3 Executive Summary

Rules as Code is a movement looking at annotating legislation in machine readable formats
that enable various technical transformations and tests to be performed on it.

The goal is to variously make law into one or more of the following:

• executable production code

• basic expositionary systems to drive shared understanding and iterative development

• systems that have had formal consistency proofs applied

• navigable information architectures that are machine traversable

• executable inputs into macro-economic statistical models

• as a data feed to be interrogated by AI and made more comprehensible to people
without legal training

• reference systems for regulated industries that can reduce their compliance costs

paper identifies two new possible outputs which are important for digital transformation:

• test first development using property-based system tests

• a shared catalogue of data sources

The significance of this is that test-first development can dramatically reduce development
times and costs – savings in the 10’s of percents and not single percents. See Appendix 1 for
worked examples with measured costs.

5

4 Context

I have been talking to Denis Merigoux and his Catala team at INRIA, Bridget Hornibrook at the
DWP and Adrian Kelly who has been working on LogLaw, Matthew Waddington and Flora
Leather in the Bailiwick of Jersey and Pia Andrews in New South Wales

Adrian and Pia were part of the OG Rules As Code endeavour - the New Zealand
Government’s Better Rules for Government Discovery Report - which is an oldie-but-goldie
that is well worth your time reading.

However, no comprehensive study has been made of legal tech by me. This working paper is
observational.

https://team.inria.fr/prosecco/
https://www.innovationaus.com/turning-rules-and-laws-into-computer-code/
https://www.digital.govt.nz/dmsdocument/95-better-rules-for-government-discovery-report/html

6

5 Background

In the private sector the process of specifying a new computer system can be regarded as a
process of empendantifying a series of documents, taking them from being fairly free form to
very strictly structured:

Code is very pedantic – consisting as it does of 0’s and 1’s in a strict order – swapping any pair
of them can cause systemic meltdown.

In this diagram I split out the technical specification into 2 parts – the functional specification
and the non-functional one – for reasons that will become clear later.

Agilists might here be looking knowingly and saying “ah but that’s waterfall!”. All software
development is waterfall – agile is just lots of them.

The quantum of work is not affected by doing it agile – the benefit comes from early course
correction, eliminating rework and fix-ups and arriving at a better outcome faster and
cheaper. Each agile sprint is a waterfall in its own right.

7

The public sector by contrast can be doubly-pendantifying:

Note: in the context of the Scottish parliament the Programme for Government (which
contains a yearly Legislative Programme) is a 5 year living programme which includes all the
primary legislation (Bills/Acts) passing through the parliament. Law pertaining to state
systems is also defined in secondary legislation (ministerial orders).

Law, like code, is ultra-pedantic – a comma will support enough rope to hang a man.

The fever dream of Rules as Code (or to be fair, as it comes across to me) is to capture the
core essence of the law in a machine-readable form and transform it into code, a great leap
forward:

When we look at what Rules as Code people are doing with their tools – it isn’t this.

The initial work in New Zealand was a lawyer-led approach to rethinking the development of
law to enable simpler and better development of regulations, entitlements, calculations.

They pioneered cross-team working with parliamentary counsel, policy makers, service
designers and delivery people working in cross-disciplinary teams.

The project also identified and struck down key barriers between policy intent and
deliverability and demonstrated value and velocity by using rules as code.

Rule as Code tech can be used as way of building quick prototyping tools that:

• enable fast design feedback loops in the development of policy and legislation –
having a common ‘surface’ that members of different professions can engage with is
an excellent tool for collapsing getting-on-the-same-page discussions and associated
costs

• provide plug-in entitlement and calculation elements for financial modelling covering
take-up and impact of benefits, monte-carlo exploration of tapers and better design
of hardship/compensation schemes, tax base modelling etc, etc

• are a very useful quick’n’dirty first pass usability tool that can be used with co-design
communities

8

But the leap to write-once/deploy is never going to happen. And its obvious why looking at
the flow of pendantification. The law only covers the functional spec. In the case of social
security that would be who gets what money in what circumstances.

It doesn’t cover the non-functional spec – things like: you need to log in, the data needs to go
into a database, there has to be rules-based-access-control, and dashboards, and cloud
deployment and it must work in browsers and disburse actual payments to actual bank
accounts.

I think a more realistic approach should be called Rules As Tests. In this world the machine-
consumable annotated law consumes existing data sources (and their legal and regulatory
definitions). It then possibly generates three testing outputs:

• macro-economic calculations – code that can be deployed without the normal non-
functional requirements because it is used in economic modelling systems where
individuals are treated statistically and not as individuals (economic testing)

• an MVP (single user, basic GUI) which can be used to iteratively seeking consensus
during the development of the law – saving time and effort in developing regulations
whilst increasing quality and effectiveness is a worthy goal in its own right

• as a property test generator for the final live production system

Lets look at these 4 products in context:

The use of these technologies to make MVPs is proven by the work of Bridget Hornibrook and
Adrian Kelly at the DWP and elsewhere. Denis Merigoux and his team have demonstrated its
possibilities in Macro Calculations.

9

Consequently the rest of this paper will focus on two things:

• Test First Development

• the consumption of Data Sources
o (this will include the pull-back of the Non Functional Specs in the diagram –

not strictly related technically, but organically related organisationally)

Test First development brings tremendous gains – the fact that the test type is Property Tests
is just an added bonus.

10

6 Future State

6.1 Test First Development

Test First Development is a common technique to improve software delivery and reduce
rework (and hence costs). However in this instance by generating tests it adds additional
value by eliminating work:

With the right tooling and appropriate care at the design-of-the-law level the entire business
and functional specification steps can be eliminated. Well designed, comprehensive and
appropriately annotated system tests can perform the majority of this work.

Project management in major IT deliveries imposes huge reporting demands on software
developers and other professionals to assemble a picture of progress that is comprehensible
by non-technical managers. Much of this can be expressed in terms of simple tests passing Vs
tests not passing – if and only if the test suite is known to be functionally complete and can
run and fail for all tests – including those that test as-yet-unwritten features.

See Appendix 1 for a measure of the size of the cost savings – but be cognisant that
previously measured costs in different circumstances can’t be simply read across.

For systems like social security and taxation there are additional benefits. It is possible to
generate property tests. A property test takes a set of inputs and states that the output must
have these properties. In the case of a social security system you could generate a test along
the lines of:

Caroline is 42, has two children aged 11 and 7, one with special needs. Her husband
earns £2,400 a month and she is entitled to X in benefits.

If the end system produces the same value of X – good to go.

11

But these tests are generatable – there is also a Caroline with 3 kids, and an income of £1,200
and so on and so on. And Caroline can give birth, and her middle daughter can be paralysed
suddenly in a car crash, and her man can get cancer and rolling on and over all the edge cases
endlessly.

Generative property-based tests are unbounded in number. Most software testing problems
can be summarised as “not enough tests” – test first property generative tests have the
opposite problem – “too many to run”.

A huge proportion of the cost of major software programmes consists of a number of things:

• driving agreement and understanding amongst all stakeholders that they are talking
about the same thing

• building a model of progress towards a goal that can be used in communication with
stakeholders

• testing that the developed software actually does what it is supposed to go – and
delivering confidence to stakeholders and team members that it is reliable

Rules As Code/Tests can significantly reduce costs by addressing each of these areas – by
generating MVPs that professionals from different disciplines can share, by generating
completion figures in the form of tests passing/not-passing and by actually writing huge and
flexible test suites.

(Readers should beware of going over the top – the annotations to law that Rules As Code
uses are not in themselves justiciable – the fact that a system passes the system tests does
not, in itself, mean that the system is legal or complies to the rule of law. As long ago as 1970
Djikstra told us Program testing can be used to show the presence of bugs, but never to show
their absence! It follows that tests suites generated by Rules As Code can only tell us when
the system under test violates the law, not that it conforms to it.)

6.2 Consumption of data sources (and common non-functional specification)

Moving towards using code annotation in law opens up two other potential savings. The
functional specifications describe what the software does – what makes it a social security
system as opposed to a tax system. They are different for each system.

By contrast the non-functional specifications usually are similar (if not identical) for different
systems. It is perfectly possible for a tax and a social security system to have identical log-in
mechanisms, reuse the same payment rails, work in the same browers, use the same
underlying database technologies.

So simply splitting functional and non-functional requirements enables the partial
Lego/IKEAisation of systems. The expectation that systems run by government have common
and standardised non-functional requirements eliminates rework in its own right – this is
another world tho and won’t be discussed here – but in Working Paper 3 – The Lego state.

Law and any Rules As Code language typically define entities in an abstract sense ‘a person’,
‘a taxpayer’ or ‘a child under 16’. What we want in government is not the abstract person –

12

but the reified one – ‘a person with an identity on the government identity service’ or ‘a
person who has a medical certificate issued by a recognised national health system’.

If the definitions in different parliamentary acts can be harmonised and systematised, then
the implementations of that data can be merged. The move to services that encapsulate and
expose single sources of data under an appropriate API will become possible.

How this process would be embedded in a language like Catala needs to be determined. It
might be a simple case of using include/header files – so common definitions are stored in
their own legislation which is annotated in the usual way – but lacks process or rules and
contains only entity definitions. These definition can be included in other legislation and their
Catala entity relations imported. There is then (outside the language/law definition) a
presumption that these entities are implemented as services somewhere and offered as APIs.

These two problems merge because some of the core barriers to merging data sets don’t lie
in the functional or calculation aspects of a particular statute but in regulations that are
formally non-functional – so access controls (who can see what data) or data retention
policies (how long the data must be kept for) and a myriad of other seemingly insignificant
things that act as a barrier to consolidation.

Data consolidation is a key activities for two reasons:

• it brings simplicity to the user – if only one system holds your address and surname
then changing them when you get married is much simpler

• it reduces cost – every instance of data has to be maintained

13

7 Barriers to uptake

Testing as a discipline is fairly low profile in Scottish and UK governments. GDS doesn’t have
explicit testing standards much beyond “test things” in the Service Manual2 and there isn’t a
service community for quality3. So jumping from here to Property Based Testing is a not-
insignificant leap and would require a training/education programme. (This is on top of the
migration of policy and legislation people from the old world to the new.)

For the Scottish Government with its stated policy aim of independence, building these
capabilities now in order to support the creation of new national institutions (central bank,
main tax office, etc) would seem to be a sensible option.

But there are also outstanding technical issues – I have explored them in the context of
Catala in Technical Appendix 2 – Outstanding technical issues.

In summary there are both skills and technical barriers to moving in this direction.

2 https://www.gov.uk/service-manual/technology/quality-assurance-testing-your-service-regularly
3 https://www.gov.uk/service-manual/communities

https://www.gov.uk/service-manual/technology/quality-assurance-testing-your-service-regularly
https://www.gov.uk/service-manual/communities

14

8 Further work

And there is a second element of the modern state that Rules As Code can help in. We
substantially live in a regulated world. Rules As Tests could also potentially be used to publish
compliance test suites for regulated organisations to use. It has been reported to me that
Angus Moir at the Bank Of England is exploring this use.

In addition Pia Andrews reports4 that publishing a reference example of banking regulations
using Rules As Code saved a single regulated bank $16m a year (not sure if that’s $US or
$AUS there…).

As long as the strategic goal of the Scottish Government remains independence then there is
a strategic requirement to have the capability to build a new tax system, central bank, full
social security and pension system, etc, etc. Rules as Code and Rules as Test both would
simplify, reduce the cost and delivery time of transitioning to this new world.

4
https://docs.google.com/presentation/d/1uUYTlmsj05KjUrto2U1u1RK08WeB0rKIEbm4K3MRMTU/edit#slide=id.
p19

https://docs.google.com/presentation/d/1uUYTlmsj05KjUrto2U1u1RK08WeB0rKIEbm4K3MRMTU/edit#slide=id.p19

15

9 Technical Appendix 1 – Test First Development Worked Examples

9.1 Test Case 1 – Hypernumbers

Hypernumbers was a startup that aimed to build a web-native spreadsheet (Google Sheets is
an open source desktop spreadsheet under the covers). Every cell, every page, every range
would have its own URL and these URLs would be composable in functions (making a
functional programme of the web).

To that end a goal of Excel 95 compatibility was set and a test framework was developed that
could convert Excel spreadsheets into system tests.

A function would be inserted into a cell and Excel would resolve that function (and any
dependency tree it was involved in) in the usual manner returning a value.

A programme was written to traverse all the test spreadsheets in a directory and then make
of every populated cell a systems test.

The tests were hand written – but that was simply a large set of spreadsheets. After about 2
weeks there were 100,000 of them. At the time of the first test run the results were 6 tests
passing, 99,994 tests failing. (The 6 passing tests had the formulas 1, 1.0, 1.1e+1, -1, -
1.0, -1.1e+1).

During the development some thousands of unit tests were written alongside the hundred
thousand of end-to-end system tests.

The cash-equivalent costs (what we would have spent if we had paid market salaries and had
an office, etc, etc) were between £1.25 and £1.5m – and the COCOMO II Estimate (based on
the Open Office spreadsheet source code) was £8m to £20m. The work was done with a
team of 4 engineers. These figures need to be treated with appropriate caution. Reading
across savings on this scale to the public sector would be a mistake – but the possibility of
very significant costs savings is very real.

This is an example of naïve property-based testing, using the identity property – the same as
Rules as Test would generate.

9.2 Test Case 2 – bet365

bet365 is the largest and most successful internet company in the UK. bet365 had its growth
blocked at about £30bn turnover because its data layer (based on Microsoft SQL) just
couldn’t scale at peak. Betting is a very bursty business with lowish daily traffic, weekend
peaks and Himalayan traffic at the Grand National, the World Cup etc.

We put a slip into production and logged the Germany-Brazil semi-final in the World Cup and
captured over 8 million discrete events.

16

The logs were processed to anonymise them before copying them down from the production
zone in the data centre. They had to be post-processed to create setup activities (create all
the users, create all the markets in all the fixtures that they betted on, price those markets,
etc, etc).

These events were then replayed side-by-side into one version of the code with the existing
data layer and one with the new data layer.

The test case was run twice and the results from the two systems were compared.

If the two systems returned the same results for all posts then the tests themselves passed.
As belt-and-braces a job that ran over the post test databases was created. It asserted that
the persisted data was consistent (same number of users, same number of bets, total
wagered, total won and totals lost identical in both cases, and so on and so forth).

I do not have working cost estimates for this work, but the live/no-down-time replacement of
the data layer was a small team of less than 10 working for less than a year. At the time
bet365 was turning over $600m a week (it is now $2bn a week) – so a zero down time/failure
free swap out really mattered. The property being used for property testing here is also the
naïve identity property – the same as Rules as Test would generate.

17

10 Technical Appendix 2 – Outstanding technical issues

Apart from the training issue – there are three outstanding technical issues that Catala would
need to solve to be fully useful for this approach:

• generating the tests

• making the tests anti-fragile

• decoupling the system under test from Catala

I am using Catala as the example because it’s the one I understand best, and the one with a
fully articulated parse chain5.

10.1 Issue: generating tests

Testing is substantially about 2 things:

• applying a defined payload to a point of application

• matching the response to an expectation

Its clear that Catala has enough information to generate the data payload and it is already
capable of generating code to calculate the expected response – the problem is the point of
application – and this in itself brings fragility issues.

Both the examples in Technical Appendix 1 – Test First Development Worked Examples have
one thing in common – the test suite and the system under test share a routing table – by
design.

In the online spreadsheet we can express a route to a particular formula/value pair in the
Excel spreadsheet that contain the test definitions as a generalised path (which by definition
is directed and acyclic):

directory -> file name -> sheet -> cell addressed as row/column

In writing the tests this can be transformed into a URL which has the self-same properties:

http://testsystem.local/directory/file name/sheet name/cell address

It is demonstrably trivial to apply the payload at the point of application and get back a result
with can be compared. The entire test suite can run and where the formula isn’t parsable (as
=1+1 wasn’t on day 1) the system under test returns an error value and the assertion, and
hence test, fails.

5 https://catala-lang.org/ocaml_docs/catala/index.html

https://catala-lang.org/ocaml_docs/catala/index.html

18

In the case of bet365 the same capability arose from where we recorded the test case:

Because the test was a side-by-side test with the same front end and only the DB layer (ie the
model and below) changed out, we were able to capture the payload and the URL (the point
of application) as well as the result. This meant tests could be generated.

The problem with Rules as Test is not that a routing table cannot be constructed from the law
– the sort of law under consideration – propositional logic – can be expressed as a directed
acyclic graph (Catala will throw a consistency error if that is not the case) and thus the
application of data items and the retrieval of calculated values could be done via a URL
structure which could be generated. The problem is that that URL structure is unlikely to have
the appropriate affordances for a user-friendly system – very unlikely.

A second problem is that there are actually two sorts of tests that we can generate:

• simple property tests

• hysteresis property tests

A simple property test scenario is Caroline has a child and applies for benefit.

By contrast a hysteresis one is Caroline is childless and applies for a benefit, then she has a
child, then the child gets a terminal disease, then the child dies.

These two tests capture different aspects of systems behaviour and ideally we want both of
them – writing tests for both of them automatically in an anti-fragile manner will be a
challenge.

19

It would be trivial to have Catala generate a skeleton set of tests and a complete set of
generators and then let software developers assemble a test suite as they went along and
implemented features.

The problem with this approach is that the day 1 progress report would not be 6 tests
passing, 99,994 tests failing but 6 tests passing, 0 tests failing. The lack of insight into the
missing 99,994 would in and of itself conjure up a complete project/progress management
apparatus whose elimination we are seeking.

10.2 Issue: fragility

The second issue arising is fragility. The property-based tests are a sub-class of system or
end-to-end tests which are frowned upon in most software shops. Here is the test pyramid
from the UK Hydrographic Office6:

The strategy here is to test discrete components and then do the minimum amount of testing
to ensure that they are plumbed together. It builds on the principle of shadowing.

Shadowing is when the failure of one test guarantees the failure of another.

Consider the following spreadsheet formulae written as tests:

Formula Expected Value
=1e+1 10

=1e+1*10 100

=sum(1e+1, 1) 11

If the first test fails because the spreadsheet under test doesn’t not yet understand scientific
notation then the 2nd and 3rd will also fail – they are shadowed by the root test.

A test suite where one error causes a cascade of failing tests is a fragile suite – fragility is
experienced by software developers when a small change to the code causes a much larger
amount of work to make the test suites pass again.

6 https://github.com/UKHO/docs/blob/main/quality-assurance/test-strategy.md

20

The UKHO pyramid deals with test fragility in two ways.

Firstly it tries to reduce shadowing to a minimum – which is why it’s a pyramid and not a
column or a vase.

Secondly is it uses the knowledge of shadowing to triage the tests. The pyramid roughly is a
hierarchy of shadowing: if there is a unit test failure in the bottom layer, there is an
expectation that might be failures higher up in the domain logic/component tests, and
integration tests, and flow/api tests and end-to-end and gui tests.

In the event of a regression failure and a sudden massive amounts of tests no longer passing
the developer has their failure triaged by the shadowing structure – first fix all the failing unit
tests and then retest. Usually that will fix it. If not move on to the failing domain
logic/components test and systematically work up the pyramid.

By using generated property-based end-to-end testing we don’t see a simple pyramid but a
table:

(Generated property-based tests would augment but not replace normal testing protocols.)
With property-based generators there might be 10,000,000 rules as tests generated –
99.99% of all tests.

This brings a couple of issues:

• when to run the test suite

• what the developer does when confronted by 3,000,000 failing tests

The first is a set of practical problems arising from how long it takes. Where in the build chain
does it run – not on the client side pre-comit, but:

• on each commit?

• daily overnights?

• weekly over-weekends?

If it runs daily or weekly then it runs against a basket of commits – so who is responsible for
fixing the faults?

The second problem is our old friend shadowing – generated tests are slight variations on
each other and the amount of shadowing is enormous. If the tests use a reducing framework

21

like QuickCheck – it will triage for you. In the absence of that the test system will need to
have some simple-to-complex naming convention (at Hypernumbers we had test suites
named with prefixes a_, b_, c_ etc, so fix the a’s first, tests were also arranged simple-to-
complex within our hand-written test suites too – fix the top ones first and work your way
down).

Developing a test system that can generate self-triaging tests is not insoluble, but it requires
someone to do it.

10.3 Issue: decoupling

Catala is a programming language – its parser chain is written in OCaml, but it has hooks for
transpilers to produce outputs in a range of languages other than OCaml, most notably
Python and Javascript7.

If it is to be used to generate test suites it needs to respect the fact that the systems under
test may or may not be written in any particular language. The mechanism that Catala uses
for the calculations (transpile them to your target language) may or may not be appropriate
for testing (generate a test runner in your target language) – or it may make sense to expect
the system under test to expose URLs to which payloads can be applied – which would
enable a single test runner executing generated tests for all development languages. As
noted earlier this brings its own problems.

If Catala were to output not calculations but state machines it might be possible to rejig the
property-based tests as component tests:

This would solve the problem of the routing table – you would be applying state transitions at
some internal level – the state transitions (sans logic) could probably be generated too as
stubs. I can see a way to do this for Elixir/Erlang and the Beam in general, where there is
strong and native support for state machines – but this violates the principle of decoupling.

10.4 In Summary

7 I had a pop at writing first a transpiler first to Gleam and then Elixir (both Beam languages) for fun, but only
having 2 or 3 days, and not speaking either OCaml or Catala (or Gleam) proved a bit of a barrier to making a lot
of progress – but adding transpilers to other languages in Catala is, as they say, only a small matter of code.

22

There needs to be a substantial programme of work to address and work through these
issues before Rules as Test could be production ready. Building a test runner with the right
affordances to fend of project management demands, and also be integratable in automated
build processes on GitHub is non-trivial.

